New Physics in multi-Higgs boson final states in 14 and 100 TeV colliders

Sichun Sun National Taiwan University

Based on a work to appear with Wolfgang Kilian, Qi-Shu Yan, Xiaoran Zhao, and Zhijie Zhao

Outline

- EFT parametrization of New Physics
 - SILH (strongly interacting light Higgs) of composite Higgses
 - Higgs inflation (Higgs gravity couplings)
- gg -> hhh in 2b2l4j+MET
- New physics in gg->h, gg->hh, gg->hhh
- Benchmark points for Models

Higgs potential

• In the Standard Model:

$$V(H^{\dagger}H) = -\mu^2(H^{\dagger}H) + \frac{\lambda}{4}(H^{\dagger}H)^2,$$

$$H = (G^+, \frac{1}{\sqrt{2}}(v + h + iG^0))^T$$
 $v = 2|\mu|/\lambda \approx 246 \text{ GeV}$

$$V_{self} = \frac{\lambda}{4}vh^3 + \frac{1}{16}\lambda h^4,$$

EFT for BSM

$$\mathcal{L} = \mathcal{L}_{SM} + \Delta \mathcal{L}_6 + \Delta \mathcal{L}_8 + ...$$
 $\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_i \frac{f_i}{\Lambda^2} \mathcal{O}_i,$

• The SM with BSM

$$\begin{split} \mathcal{L}_{EFT} &= \mathcal{L}_{SM} + \mathcal{L}_t + \mathcal{L}_h + \mathcal{L}_{ggh}, \\ \mathcal{L}_t &= -a_1 \frac{m_t}{v} \bar{t} t \, h - a_2 \frac{m_t}{2v^2} \bar{t} t \, h^2 - a_3 \frac{m_t}{6v^3} \bar{t} t \, h^3, \\ \mathcal{L}_h &= -\lambda_3 \frac{m_h^2}{2v} h^3 - \frac{\kappa_5}{2v} h \partial^{\mu} h \partial_{\mu} h - \lambda_4 \frac{m_h^2}{8v^2} h^4 - \frac{\kappa_6}{4v^2} h^2 \partial^{\mu} h \partial_{\mu} h, \\ \mathcal{L}_{ggh} &= \frac{g_s^2}{48\pi^2} \left(c_1 \frac{h}{v} + c_2 \frac{h^2}{2v^2} \right) G_{\mu\nu}^a G^{a\mu\nu} \end{split}$$

$$a_1 = \lambda_3 = \lambda_4 = 1$$
 and $a_2 = a_3 = \kappa_5 = \kappa_6 = c_1 = c_2 = 0$.

UV theory I, SILH

- Strongly interacting Light Higgs,
- CP preserving part: up to dim-six, at least 2 Higgs fields.

$$\begin{split} \mathcal{L}_{\text{SILH}} &= \frac{c_H}{2f^2} \partial^{\mu} \left(H^{\dagger} H \right) \partial_{\mu} \left(H^{\dagger} H \right) + \frac{c_T}{2f^2} \left(H^{\dagger} \overleftarrow{D^{\mu}} H \right) \left(H^{\dagger} \overleftarrow{D}_{\mu} H \right) - \frac{c_6 \lambda}{f^2} \left(H^{\dagger} H \right)^3 \\ &+ \left(\frac{c_y y_f}{f^2} H^{\dagger} H \bar{f}_L H f_R + \text{h.c.} \right) + \frac{c_g g_S^2}{16\pi^2 f^2} \frac{y_t^2}{g_{\rho}^2} H^{\dagger} H G_{\mu\nu}^a G^{a\mu\nu} \\ &+ \frac{i c_W g}{2m_{\rho}^2} \left(H^{\dagger} \sigma^i \overleftarrow{D^{\mu}} H \right) \left(D^{\nu} W_{\mu\nu} \right)^i + \frac{i c_B g'}{2m_{\rho}^2} \left(H^{\dagger} \overleftarrow{D^{\mu}} H \right) \left(\partial^{\nu} B_{\mu\nu} \right) \\ &+ \frac{i c_H W g}{16\pi^2 f^2} (D^{\mu} H)^{\dagger} \sigma^i (D^{\nu} H) W_{\mu\nu}^i + \frac{i c_{HB} g'}{16\pi^2 f^2} (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ &+ \frac{c_{\gamma} g'^2}{16\pi^2 f^2} \frac{g^2}{g_{\rho}^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu}. \end{split}$$

$$MCHM4: c_H = 1, \quad c_y = 0, \quad c_6 = 1, \end{split}$$

 $MCHM5: c_H = 1, \quad c_y = 1, \quad c_6 = 0.$

Parameters	SILH with Eq. (9)	MCHM4	MCHM5
a_1	$(1 - \frac{3}{2}c_y\xi)(1 - \frac{1}{2}c_y\xi)^{-1}(1 + c_H\xi)^{-1/2}$	$1 - \frac{1}{2}\xi$	$1 - \frac{3}{2}\xi$
a_2	$-3c_y\xi(1-\frac{1}{2}c_y\xi)^{-1}(1+c_H\xi)^{-1}$	0	-3ξ
a_3	$-3c_y\xi(1-\frac{1}{2}c_y\xi)^{-1}(1+c_H\xi)^{-3/2}$	0	-3ξ
c_1	$rac{1}{4}c_g\xirac{y_t^2}{g_ ho^2}$	$rac{1}{4}\xirac{y_t^2}{g_ ho^2}$	$rac{1}{4}\xirac{y_t^2}{g_ ho^2}$
c_2	c_1	c1	c1
κ_5	$-2c_H\xi(1+c_H\xi)^{-3/2}$	-2ξ	-2ξ
κ_6	$-2c_H\xi(1+c_H\xi)^{-2}$	-2ξ	-2ξ
λ_3	$(1 + \frac{5}{2}c_6\xi)(1 + \frac{3}{2}c_6\xi)^{-1}(1 + c_H\xi)^{-1/2}$	$1 + \frac{\xi}{2}$	$1 - \frac{1}{2}\xi$
λ_4	$(1 + \frac{15}{2}c_6\xi)(1 + \frac{3}{2}c_6\xi)^{-1}(1 + c_H\xi)^{-1}$	$1 + 5\xi$	$1-\xi$

$$\begin{split} \mathcal{L}_{EFT} &= \mathcal{L}_{SM} + \mathcal{L}_t + \mathcal{L}_h + \mathcal{L}_{ggh}, \\ \mathcal{L}_t &= -a_1 \frac{m_t}{v} \bar{t} t \, h - a_2 \frac{m_t}{2v^2} \bar{t} t \, h^2 - a_3 \frac{m_t}{6v^3} \bar{t} t \, h^3, \\ \mathcal{L}_h &= -\lambda_3 \frac{m_h^2}{2v} h^3 - \frac{\kappa_5}{2v} h \partial^{\mu} h \partial_{\mu} h - \lambda_4 \frac{m_h^2}{8v^2} h^4 - \frac{\kappa_6}{4v^2} h^2 \partial^{\mu} h \partial_{\mu} h, \\ \mathcal{L}_{ggh} &= \frac{g_s^2}{48\pi^2} \left(c_1 \frac{h}{v} + c_2 \frac{h^2}{2v^2} \right) G_{\mu\nu}^a G^{a\mu\nu} \end{split}$$

UV theory II, Higgs inflation

• Treat Higgs as an inflaton, coupled to Ricci Tensor:

$$S_{Jordan} = \int d^4x \sqrt{-g} \left\{ -\frac{M^2 + \xi h^2}{2} R + \frac{(\partial h)^2}{2} - \frac{1}{2} m_h h^2 - \frac{\lambda}{4} h^4 \right\} \,.$$

$$\hat{g}_{\mu\nu} = \Omega^2 g_{\mu\nu} , \quad \Omega^2 = 1 + \xi h^2 / M_{Planck}^2 .$$

$$\begin{split} S_E &= \int d^4x \sqrt{-\hat{g}} \left\{ -\frac{M_{Planck}^2}{2} \hat{R} + \frac{\partial_\mu h \partial^\mu h}{2\Omega^2} + \frac{3\xi}{M_{Planck}^2} \frac{h^2 \partial_\mu h \partial^\mu h}{\Omega^4} \right. \\ &- \left(1 - \frac{2\xi h^2}{M_{Planck}^2}\right) \left[\frac{\lambda}{4} h(\chi)^4 + \frac{1}{2} m_h h(\chi)^2 \right] \left. \right\}. \end{split}$$

Pure Higgs term:

 $\frac{c_H}{2f^2}\partial^{\mu}\left(H^{\dagger}H\right)\partial_{\mu}\left(H^{\dagger}H\right) \rightarrow \frac{c_H}{2f^2}(v+h)^2\partial^{\mu}h\partial_{\mu}h. \qquad \qquad \mathcal{L}_{kin} = \frac{1}{2}\left(1+c_H\xi\right)\partial^{\mu}h\partial_{\mu}h,$

• Higgs wavefunction renormalization: $\zeta = (1 + f_2 v^2 / \Lambda^2)^{-1/2}$

$$\mathcal{O}_{1} = (D^{\mu}H)^{\dagger}HH^{\dagger}(D_{\mu}H),$$

$$\mathcal{O}_{2} = \frac{1}{2}\partial^{\mu}(H^{\dagger}H)\partial_{\mu}(H^{\dagger}H),$$

$$\mathcal{O}_{3} = \frac{1}{3}(H^{\dagger}H)^{3},$$

$$\mathcal{O}_{4} = (D^{\mu}H)^{\dagger}(D_{\mu}H)(H^{\dagger}H)$$

$$\hat{x} = x_2 \zeta^2,$$

 $\hat{r} = -x_3 \zeta^2 \frac{2v^2}{3m_h^2},$

Our operators	Operators in Ref. [35]	Relations
$-rac{m_t}{v}a_1ar{t}th$	$-rac{m_t}{v}\zetaar{t}th$	$a_1=\zeta$
$-\lambda_3 rac{m_h^2}{2v} h^3$	$-rac{\zeta}{2v}(1+\hat{r})m_h^2h^3$	$\lambda_3 = \zeta(1+\hat{r})$
$-\lambda_4 rac{m_h^2}{8v^2} h^4$	$-rac{\zeta^2}{8v^2}(1+6\hat{r})m_h^2h^4$	$\lambda_4 = \zeta^2 (1 + 6\hat{r})$
$-\frac{1}{2v}\kappa_5h(\partial h)^2$	$\frac{1}{v}\hat{x}\zeta h(\partial h)^2$	$\kappa_5 = -2\hat{x}\zeta$
$-\frac{\kappa_6}{4v^2}h^2(\partial h)^2$	$rac{\hat{x}}{2v^2}\zeta^2h^2(\partial h)^2$	$\kappa_6 = -2\hat{x}\zeta^2$

• 1506.03302 by Hong-Jian He, Jing Ren, Weiming Yao

$$\mathcal{V}\left(H^{\dagger}H\right) = -\mu^{2}\left(H^{\dagger}H\right) + \lambda\left(H^{\dagger}H\right)^{2} + \frac{c_{6}\lambda}{f^{2}}\left(H^{\dagger}H\right)^{3}$$

In this case, the VEV is given by

$$-\mu^2 + 2\lambda v^2 + \frac{3}{4}c_6\xi\lambda v^2 = 0,$$

and the corresponding Higgs mass is defined by

$$m_h^2 = 2\lambda v^2 \left(1 + \frac{3}{2}c_6\xi\right)\zeta^2. \qquad \frac{1}{2}m_h^2 = -\frac{1}{2}\mu^2 + \frac{3}{2}\lambda v^2 + \frac{15}{8}c_6\xi\lambda v^2.$$

An alternative way is performing a non-linear transformation $h \to h - \frac{c_H \xi}{2} (h + \frac{h^2}{v} + \frac{h^3}{3v^2})$

• To eliminate cH term, traditionally is through nonlinear redefinition. ————-gives rise to the same result up to some order, but less sensitive to the derivative operators, and the Higgs kinematics

$2b2l^{\pm}4j + \not \!\!\! E$ CHANNEL IN THE SM

Process	$\sigma \times BR$ (ab)	K-factor	Expected number of events
Signal	10.71	2.0	642
$h(WW^*)t\bar{t}$	2.55×10^5	1.2	$9.18 imes10^6$
$t\bar{t}W^-W^+$	$3.68 imes 10^4$	1.3	$1.55 imes 10^6$

• gg -> hhh -> bbWWWW

New physics contributions

$$\begin{split} M(gg \to hhh) \propto f_1 a_1^3 + f_2 a_1^2 \lambda_3 + f_3 a_1^2 \kappa_5 + f_4 a_1 \lambda_3^2 + f_5 a_1 \lambda_3 \kappa_5 \\ &+ f_6 a_1 \kappa_5^2 + f_7 a_1 \lambda_4 + f_8 a_1 \kappa_6 \,, \end{split}$$

$$\begin{aligned} \sigma(pp \to hh) = & f_1 a_1^4 + f_2 a_1^3 \lambda_3 + f_3 a_1^3 \kappa_5 + f_4 a_1^2 \lambda_3^2 + f_5 a_1^2 \lambda_3 \kappa_5 \\ &+ f_6 a_1^2 \kappa_5^2 + f_7 a_1^2 a_2 + f_8 a_1 \lambda_3 a_2 + f_9 a_1 \kappa_5 a_2 + f_{10} a_2^2 \,. \end{aligned}$$

	$gg \rightarrow h$	$gg \rightarrow hh$	gg ightarrow hhh
Parameters	a_1, c_1	a_1, c_1	a_1, c_1
involved	-	$a_2, c_2, \lambda_3, \kappa_5$	$a_2, c_2, \lambda_3, \kappa_5$
	-	-	a_3,λ_4,κ_6

No.	<i>a</i> ₁	c_1	$\sigma(gg \to h) ~[{\rm pb}]$	$\sigma(gg \to hh)$ [fb]	$\sigma(gg \to hhh)$ [fb]
1	0.99	-0.01	771	1710	5.90
2	-0.86	1.94	839.6	1685	29.7
3	0.78	-1.82	763	1747	6.23
4	-0.66	-0.37	817.8	1690	5.74

No.	ξ	c_1	$\sigma(gg ightarrow h)[pb]$	$\sigma(gg \to hh)$ [fb]	$\sigma(gg \to hhh)$ [fb]
MCHM4	0.97	0.48	764	1618	321
MCHM5	-0.20	-0.30	817	1854	122
HGM	$\hat{x} = 0.02$	$\hat{r} = 3.2$	816	1786	37.78

Process	$\sigma(14\;TeV)$ (fb)	err.[th]	err.[exp]	$\sigma(100~TeV)$ (fb)	err.[th]	err. [exp]
$gg \rightarrow h$	$4.968 imes 10^4$	$^{+7.5\%}_{-9.0\%}$	±1%	8.02×10^5	$^{+7.5\%}_{-9.0\%}$	$\pm 0.1\%$
$gg \to hh$	45.05	$^{+7.3\%}_{-8.4\%}$	< 120 fb	1749	$^{+5.7\%}_{-6.6\%}$	$\pm 5\%$
gg ightarrow hhh	0.0892	$^{+8.0\%}_{-6.8\%}$	_	4.82	$^{+4.1\%}_{-3.7\%}$	< 30 fb

Summary

- Study gg->hhh->bbWWWW channel both in 14 and 100 TeV colliders, in SM and BSM
- We clarified some points about non-linear redefinition in Higgs potential.
- Show how gg->h, gg->hh and gg->hhh constrains BSM:
 - composite Higgs
 - Higgs inflation

Thank you

